Tumor-wide RNA splicing aberrations generate immmunogenic public neoantigens across cancers
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BACKGROUND

Cell-based immunotherapy shows durable survival benefits in various cancers.'? Yet, many tumors
evade eradication due to intratumoral heterogeneity (ITH)3’ of their cellular and genetic landscape.
Despite immunotherapeutic success in cancers with high immune infiltration and mutational load,®
cancers with extensive ITH or lower mutational burdens are more resistant.! Current strategies
targeting tumor-specific antigens (TSAS) focus on peptides that arise from somatic nhonsynonymous
mutations,1? however this approach yields limited targets in tumors with low mutational burdens.® To
expand the repertoire of potential immunotherapeutic antigens, recent studies explored cancer-
specific splicing events, otherwise known as neojunctions (NJs), as a source of TSAs. Nevertheless,
no study has examined the spatial and temporal conservation of NJs across whole tumors. Thus,
whether neojunction-derived targets are clonally conserved remains unknown.

To address this clinically relevant knowledge gap, we investigated the clonality of neojunctions
across cancer types to identify shared, or “public”, tumor-wide NJ-derived TSAs. We developed the
Spatial Splicing Neoantigen Identifier Pipeline (SSNIP) for characterizing NJs found across multiple
Intratumoral sites (spatially-conserved) by systematically mapping NJs across distinct regions in the
same tumor. (Figure 1) We identified immunogenic NJ-derived TSAs proteolytically-processed and
presented on prevelant human leukocyte antigen (HLA) molecule. Recognition of these antigens by
TSA-specific CD8+ T-cells induced T-cell receptor (TCR) signaling and antigen-dependent tumor cell
killing. Together, these findings highlight the potential of targeting tumor-wide public NJ-derived
TSAs as a novel class of “off-the-shelf” cancer immunotherapies, offering a promising avenue for
Improving cancer treatments.
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NJ INTRATUMORAL HETEROGENEITY ACROSS CANCER TYPES
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Figure 2: in silico prediction of neojunction-derived peptide presentation by HLA. A. Overview of the tumor-wide characterization of neojunctions by investigating
RNA-sequencing of multiple intratumoral regions in various cancer types. B. Heatmaps representing log,(CPM) of neojunctions (rows) across five samples within the
same tumor (columns) in colon adenocarcinoma (COAD), kidney chromophobe (KICH), liver cancer (LIHC), and stomach adenocarcinoma (STAD). Neojunctions found
across all five intratumoral samples are annotated in yellow. C. 3-D model of the brain and tumor (yellow) derived from patient 470 (P470). Approximately 10 spatially
mapped and maximally distanced biopsies (blue) were taken within each. Whole-exome sequencing, RNA-sequencing, and further analyses were conducted on samples
each of these regions. D. Box and whisker plots of glioma-specific neojunctions (n=789) based on their ITH across patients. E. Distribution of glioma-specific

neojunctions (n=789, columns) based on their ITH across patients. F. Dot-plot with best-fitting curve mapping the p-values of all paired n core and 10 core iterations.

NJ-SPECIFIC TCRS ARE IDENTIFIED FROM DONOR-DERIVED PBMCS
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Figure 1: Identification of neojunctions (NJs) in TCGA samples. A. Pipeline for identifying putative, tumor-wide, cancer-specific alternative splicing events
from RNA-seguencing data from The Cancer Genome Atlas (TCGA) B. Total public neojunctions detected per sample across tumor types C. Distribution of public
neojunctions based on splice types: exonic loss due at the 3’ or 5’ splice site (A3 or A5 loss), intronic gain at the 3’ or 5’ splice site (A3 or A5 gain), exon skip (ES),
junction within exon, junction within intron, others (F) and frame-shift (fs) status D. Expression of all pan-cancer-spanning neojunctions (log,(CPM)) across all
studied TCGA tumor types.
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Histogram illustrating the scores pertaining to the likelihood of peptide presentation calculated from each algorithm for the top scoring 1-percentile of n-mers categorized
by HLA-allele. C. Composite presentation scores of the final candidate list of top scoring n-mers that are also validated as detected in RNA-sequencing and mass
spectrometry data. D. Pipeline overview for identifying neojunction-derived neoantigen-reactive T-cell populations through in vitro sensitization (IVS). E. 10x V(D)J IFNG
signatures of highly proliferated TCR clonotypes cultured against T2 cells pulsed with the neoantigen (colored), a control peptide (light-gray), or no peptide (dark-gray). F.
NeoAgnas (top) and NeoAgp »»-specific (bottom) TCR-transduced PBMC-derived CD8* T-cells were activated against neoantigen-pulsed T2 cells in a dose-dependent

manner. G. NeoAg\as-dextramer staining of bulk CD8* T-cells derived from an HLA-A*02:01 healthy donor (left) and glioma patients (right).
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NJ-DERIVED PEPTIDES ELICIT CD8+ T-CELL RESPONSE
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Figure 4: Neojunction-derived peptides elicit CD8+ T-cell driven responses. A. NJ;\as-derived neoantigen-specific TCR-transduced triple-reporter Jurkat76
cells were co-cultured against transfected COS7. TCR activation of TCR-transduced triple-reporter Jurkat76/CD8 was measured by flow cytometry analysis of
NFAT-GFP. B-C. Mass spectrometry spectra of NJ;yas-derived neoantigen n-mers detected through IP-MS/MS following HLA-A*02:01 pulldown of HLA-A*02:01
and full-length neojunction-encoding mRNA-transduced COS7 cells (B) and GBM115 tumor cells (C). D. NJgnas-derived (colored) neoantigen-specific TCR-
transduced, or non-transduced (gray) CD8* T-cells were cultured against GBM115. TCR-transduced CD8+ T-cells were either cultured with GBM115 cells that
were non-pulsed (red) or pulsed with 0.1 yM neoantigen peptide. E. NJsyas-derived neoantigen-specific TCR-transduced CD8+ T-cells cultured with HLA-A2-
negative GBM39 cells (left) or HLA-A2-transduced GBM39 cells (right). GBM39 express detectable levels of NJgnas. F- ELISA readout of secreted Granzyme B
by NJsnas-TCR-transduced (purple) or non-transduced (gray) CD8* T-cells when cultured with tumor cell lines.

TUMOR-SPECIFIC SPLICING FACTOR DYSREGULATION GENERATES NJS
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Figure 5: Disease-specific splicing- -related gene dysregulation selects for patterns of NJ expression. A. A-B. DenS|ty/box -and- whlsker plots depict
putative neojunctions expressed in IDHmut cases (orange) and /IDHwt cases (green) in TCGA GBM/LGG samples (A) and our spatially-mapped GBM/LGG
dataset (B). C-D. Box-and-whisker plot depicting the log,(RSEM) expression level of IDHmut-specific (C) or chromosomes 1p/19g-specific (D) splicing-related
genes detected from GOBP gene set with a significant (p < 0.05) log,fold increase in expression of 1.5 between IDHmut-A (yellow) and /IDHmut-O (red) cases
when compared to /IDHwt cases (blue). E-F. Pearson correlation analyses of glioma-specific neojunctions against the expression of CELF2, SNRPD2, and
SF3A3 in IDHmut-O (z-axis), IDHmut-A (y-axis), and IDHwt (x-axis) cases, with NJ,cap, OF NJpeags boxed. NJs with a Pearson correlation greater than or equal to
0.10 with the corresponding gene are purple and those with a Pearson correlation less than or equal to -0.10 are denoted with yellow dots.

Novel integrative in silico pipeline identified public, tumor-wide neojunctions.
3-D spatial sample analysis revealed neojunctions expressed tumor-wide.
Neojunction-derived neoepitopes elicited a robust CD8* T-cell response.
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