Upper Airway Stimulation for Adolescents with Down Syndrome and Obstructive Sleep Apnea

Phoebe K. Yu, MD, MPH¹; Margaret B. Pulsifer, PhD^{1,2}; Julie A. Grieco, PsyD²; Thomas B. Kinane, MD²; Donald G. Keamy Jr, MD, MPH¹; Brian G. Skotko, MD, MPP²; Christopher J. Hartnick, MD, MS¹

¹ Massachusetts Eye and Ear, Boston, MA ² Massachusetts General Hospital, Boston, MA

Epworth Sleepiness

-5.1

Introduction

- · Children with Down syndrome have a high incidence of obstructive sleep apnea (OSA) and few therapy options.
- · Adenotonsillectomy is the first line treatment but rarely resolves OSA in children with Down syndrome, and positive airway pressure therapy is often poorly tolerated.
- Upper airway hypoglossal nerve stimulation protrudes and stiffens the tongue to open the airway and has shown efficacy in adults with OSA, but has not been evaluated in pediatric populations.
- Objective: To describe the efficacy of upper airway stimulation for adolescent patients with Down syndrome and severe OSA.

Methods

- **Design:** Phase 1, single-arm, multi-center clinical trial of hypoglossal nerve stimulation in 42 adolescent patients with Down syndrome and persistent severe OSA
- Inclusion Criteria: 10–21 years old, apnea-hypopnea index (AHI) >10 after adenotonsillectomy, positive airway pressure intolerance, no circumferential palatal collapse
- Outcomes: Primary outcome of change in the apneahypopnea index (AHI) 12 months after surgery; secondary outcomes of other polysomnogram outcomes and patient-reported outcomes (OSA-18 quality of life survey, Epworth Sleepiness Scale)

Results Summary Fig. 1: Response and adherence rates. Patient characteristics: 67% male, age 15.1 years Upper airway • The mean decrease in AHI was 12.9 events/h at 95.2% stimulation was a safe 100% 12 months (95% CI, -17.0 to -8.7 events/h). and effective therapy for 73.2% 80% 65.9% Quality of life on the OSA-18 improved by –34.8, appropriately selected 60% and sleepiness on the Epworth improved by -5.1. adolescent patients with The response rate (50% decrease in AHI) was Down syndrome and 40% OSA. 65.9%. 20% The most common complication was temporary Objective and 0% oral discomfort, which occurred in 5 patients 12-Month 12-Month Nightly (11.9%). 4 patients (9.5%) had readmissions, and 2 Response AHI<10 Usage>4h patients (4.8%) had reoperations. Rate The mean duration of nightly therapy was 9.0 hours, with 40 patients (95.2%) using the device at Discussion least 4 hours a night. Limitations: Single arm study without untreated controls, exclusion of younger children Table 1: Polysomnographic and patient-reported outcomes. · Our results describe a novel therapy option for Characteristic Change at 95% CI treatment resistant OSA in adolescents with Down 12 Months Polysomnogram March 2023. AHI -12.9 -8.7, -17.0 **Obstructive AHI** -12.2 -16.2, -8.2 % Time SpO2 <90% -0.8% -1.7%, 0.2% 149; Nation J, Brigger M. Otolaryngol Head Neck Surg. +3.2% SpO2 Nadir 1.8%, 4.7% 2017;157(3):401-408. Patient-Reported -42.1, -27.5 **OSA-18** Survey -34.8

-7.4, -2.8

Mass Eye and Ear HARVARD MEDICAL SCHOOL

Ass General Brigham

subjective improvements were seen at 12 months with excellent adherence.

syndrome, which led to FDA approval for this indication in

Select References: Strollo PJ et al. N Engl J Med. 2014;370(2): 139-

We would like to acknowledge the team of investigators at the 5 sites, including: Stacey Ishman, Sally Shott, Nikhila Raol, Ryan Soose, Allison Tobey, Cristina Baldassari, Raj Dedhia